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Diffraction methods are at the heart of structure determination of solids. While Bragg-type scattering �pure
point diffraction� is a characteristic feature of crystals and quasicrystals, it is not straightforward to interpret
continuous diffraction intensities, which are generally linked to the presence of disorder. However, based on
simple model systems, we demonstrate that it may be impossible to draw conclusions on the degree of order
in the system from its diffraction image. In particular, we construct a family of one-dimensional binary systems
which cover the entire entropy range but still share the same purely diffuse diffraction spectrum.
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I. INTRODUCTION

The inverse problem of reconstructing a structure from its
diffraction pattern is one of the most important challenges in
materials science. Its degree of complexity increases if one
goes beyond simple periodic systems to cover quasicrystals,
modulated structures, or complex alloys. In particular, it has
been realized that the Bragg diffraction alone is generally
insufficient for a complete reconstruction.1–3

Currently, an increasing effort is being made to under-
stand and utilize the continuous part of the diffraction pat-
tern; see Refs. 1 and 2 for background and Refs. 4 and 5 for
recent applications. However, even in the idealized situation
of a perfect diffraction experiment with unlimited resolution,
the reconstruction is generally not unique. Already in 1944,
Patterson6 discussed homometric point sets, which are point
sets whose kinematic diffraction patterns coincide, and pro-
vided explicit examples to illustrate the ambiguity. It was
demonstrated3 that it may be possible to lift the ambiguity,
and thus to determine the structure uniquely, if higher-order
correlations are known. While one can argue that, for struc-
tures originating from systems with pure pair-potential inter-
action �or allowing a description by effective pair potentials;
compare Ref. 7�, higher-order correlations are determined by
the pair correlations,8 this is not generally the case, and in
practice measurements of higher-order correlations are ex-
tremely difficult. The role of phase information in stochastic
systems was investigated in Ref. 9.

Here, we want to go one step further, and compare the
diffraction patterns of various point sets, ranging from deter-
ministic to fully stochastic, in a parametrized way. We char-
acterize the degree of order by the corresponding �metric�
entropy. As we will see below, it is possible to construct
families of point sets which span an entire entropy range but
share the same kinematic diffraction pattern—proving that
diffraction is insensitive even to the degree of order in this
case.

We start by giving a brief introduction to some basic no-
tions of mathematical diffraction theory, for a one-
dimensional �but relevant� setting with scatterers placed on
integer positions. Although this is a highly idealized situation
that ignores displacement effects, its practical relevance is
well known; see Ref. 1 and references therein. Then, we

discuss the diffraction of two binary systems �characterized
by two scattering strengths�—a perfectly ordered structure
based on a specific deterministic sequence, and a completely
random structure based on a coin-tossing experiment. It was
observed earlier10 that these rather different systems share
the same diffraction, and are thus homometric. Finally, we
introduce a “Bernoullization” procedure to couple coin-
tossing disorder to a perfectly ordered structure, thus produc-
ing partially ordered systems of varying entropy. We employ
this procedure to explicitly construct a family of binary sys-
tems which are homometric and cover the entire available
entropy range from the perfectly ordered �entropy 0� to the
fully stochastic situation �entropy ln�2��. Although these sys-
tems may not occur naturally, they can be made syntheti-
cally. In the simplest scenario, a binary structure can be pro-
duced by sequential deposition of layers consisting of two
different materials, which makes it possible to realize any
desired sequence; see Ref. 11 for an example. More compli-
cated structures are also feasible �see, for instance, Ref. 12�
and such artificial materials with designed physical proper-
ties will become increasingly important.

II. DIFFRACTION OF DIRAC COMBS

To keep arguments simple, we consider the diffraction of
one-dimensional systems with pointlike scatterers located at
integer points n�Z. The scattering strengths are given by
weights wn for n�Z, which we assume to be real for sim-
plicity �the setting can be extended to complex weights�. The
corresponding scattering density is modeled by the Dirac
comb

� = �
n�Z

wn�n,

where �x denotes the normalized point measure �Dirac �� on
the real line, located at position x. Clearly, all distances be-
tween scatterers are integer valued. This implies that the au-
tocorrelation �or Patterson� measure �, assuming its exis-
tence for the moment, is again a Dirac comb on Z,

� = �
m�Z

��m��m, �1�

with the coefficients ��m� obtained as the limits

PHYSICAL REVIEW B 79, 020203�R� �2009�

RAPID COMMUNICATIONS

1098-0121/2009/79�2�/020203�4� ©2009 The American Physical Society020203-1

http://dx.doi.org/10.1103/PhysRevB.79.020203


��m� = lim
N→�

1

2N + 1 �
n=−N

N

wnwn+m.

The scattering intensity I�k� for wave numbers k�R is then
determined by the diffraction measure �̂, the Fourier trans-
form of the autocorrelation �; compare Ref. 13 for back-
ground. There are several slightly different versions of the
Fourier transform. We prefer to use

�̂�k� = �
R

e−2�ikx��x�dx

for a Schwartz function �, and its standard extension to
tempered distributions and measures; see Ref. 14 for details.

For the case of a one-dimensional crystal with wn=w for
all n�Z, we have ��m�=w2 for all m�Z; hence �=w2�Z,
where we use �Z as shorthand for the sum �n�Z�n. Its Fourier
transform is obtained by Poisson’s summation formula,14

�̂Z=�Z, which gives �̂=w2�Z. The diffraction image thus
consists entirely of Bragg peaks, located at integer positions
k, with equal diffraction intensities I�k�=w2. The diffraction
spectrum in this case is pure point, meaning that it consists
of Bragg peaks only. In general, the diffraction measure may
comprise three different contributions,�̂= �̂pp+ �̂sc+ �̂ac,where
�̂pp is the pure point part, consisting of a countable sum of �
peaks. The term �̂ac corresponds to the absolutely continuous
component, which can be described by a locally integrable
�and often continuous� non-negative function Iac�k� of the
wave vector k. The remainder, if there is any, is called the
singular continuous component �̂sc. While it vanishes on the
complement of a set S of measure 0, even within S it never
gives weight to any single point. When such a component is
present, S can thus not be a countable set. Apart from trivial
examples of a diffraction measure that is concentrated on a
line in the plane, or similarly on a manifold of lower dimen-
sion, typical examples for this strange contribution are dif-
fraction intensities which are supported on a Cantor set or a
dense set. A well-known example for the latter phenomenon
is the Thue-Morse chain. For an appropriate choice of its
scattering strengths, it has a purely singular continuous dif-
fraction measure; see Refs. 15 and 16 for derivations and
Refs. 11 and 12 for applications.

If the Dirac comb on Z is periodic, which means that there
is an integer p	0 such that wn+p=wn for all n�Z, the dif-
fraction measure is pure point and supported on the lattice
Z / p. It is again periodic, at least with period 1, but not nec-
essarily with any smaller period. As an example, consider the
alternating Dirac comb with wn= �−1�n. In this case, ��m�
= �−1�m for m�Z, so the autocorrelation is �=�2Z−�2Z+1. By
Poisson’s summation formula and elementary properties of
the Fourier transform �such as the behavior under scaling and
the convolution theorem�, we have

�2Z+1̂ = �cos�2�k�/2��Z/2,

which leads to the diffraction measure

�̂ = �1 − cos�2�k�/2��Z/2 = �Z+1/2.

In this case, the diffraction spectrum is again pure point, and
consists of Bragg peaks of unit intensity at positions n
+1 /2, hence on a subset of Z /2. The fundamental period of
�̂ is nevertheless still 1. To obtain absolutely or singular
continuous components, in line with the classification of Ref.
17, we thus have to go beyond the periodic situation.

III. RUDIN-SHAPIRO VERSUS BERNOULLI

Let us start with a deterministic system without periodic-
ity, based on the well-known binary Rudin-Shapiro chain.
We consider the corresponding Dirac comb

�RS = �
n�Z

w�n��n,

where w :Z→ �
1� is defined by the recursion

w�4n + �� = 	w�n� for � � �0,1�,
�− 1�n+�w�n� for � � �2,3� ,


 �2�

together with the two initial conditions w�0�=1 and w�−1�
=−1. The resulting system is an aperiodic sequence in 1 and
−1, both appearing equally frequent; see Fig. 1 for a graphi-
cal representation. It has many nice properties, such as strict
ergodicity and linear patch counting complexity; see Ref. 18
and references therein for details. In particular, these proper-
ties imply that this sequence has topological �and metric�
entropy 0.

Since �RS is a Dirac comb on Z, the autocorrelation is of
form �1�, with coefficients

�RS�m� = lim
N→�

1

2N + 1 �
n=−N

N

w�n�w�n + m� .

It follows from the unique ergodicity of the RS sequence that
all these coefficients �and hence �� exist, by an application of
the ergodic theorem. They are given by �RS�m�=�m,0, which
is astonishing. The construction of a deterministic sequence
with vanishing two-point correlations was the original �and
independent� motivation of Rudin and Shapiro, thus answer-
ing a question in the theory of Fourier series.

Let us prove this property by a simple, explicit argument.
Consider am=�RS�m� together with

bm = lim
N→�

1

2N + 1 �
n=−N

N

�− 1�nw�n�w�n + m� ,

which also exist �by another application of the ergodic theo-
rem�. Clearly, one has a0=1 and b0=0 because w�n�2=1 for
all n�Z. Then, considering m mod 4 and splitting the sums
in the definition of am and bm accordingly, recursion relation
�2� implies

a4m = �1 + �− 1�m/2�am, a4m+2 = 0,

FIG. 1. Central part of the Rudin-Shapiro chain, with open �full� circles representing scattering strengths w�n�=1 �w�n�=−1�, respec-
tively. The location of the origin �n=0� is indicated by the vertical line.
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a4m+1 =
1 − �− 1�m

4
am +

�− 1�m

4
bm −

1

4
bm+1,

a4m+3 =
1 − �− 1�m

4
am+1 −

�− 1�m

4
bm +

1

4
bm+1.

Similarly, one finds

b4m = 0, b4m+2 =
�− 1�m

2
�bm + bm+1� ,

b4m+1 =
1 − �− 1�m

4
am −

�− 1�m

4
bm +

1

4
bm+1,

b4m+3 = −
1 + �− 1�m

4
am+1 −

�− 1�m

4
bm +

1

4
bm+1.

Using the initial data, these recursion relations imply that
am=bm=0 for all integers m�0. This result shows that the
autocorrelation and diffraction measures of the binary Rudin-
Shapiro Dirac comb �RS are simply

�RS = �0 and �RŜ = � ,

where � denotes Lebesgue measure. In other words, the dif-
fraction measure is purely absolutely continuous, and con-
sists of a constant background �of height 1� only. The extinc-
tion of all Bragg peaks is due to the balanced choice of
weights. This is convenient for the theoretical argument, but
also relevant in practice19 when disregarding thermal dis-
placement. Note that all arguments can be extended to mixed
spectra.

Perhaps the most elementary stochastic system is based
on the classic coin-tossing �or Bernoulli� experiment. We
consider a stochastic Dirac comb20 on Z,

�B = �
n�Z

Wn�n,

where �Wn�n�Z is a family of independent identically distrib-
uted �iid� random variables, with probabilities P�Wn=1�= p
and P�Wn=−1�=1− p, where 0� p�1. The corresponding
�metric� entropy is

H�p� = − p ln�p� − �1 − p�ln�1 − p� , �3�

which satisfies 0�H�p�� ln�2�. It attains the extremal val-
ues for p=0 and p=1, where H=0 is minimal, and for p
= 1

2 , where H=ln�2� is maximal.
The autocorrelation �B=�n�Z�B�m��m is once again a

pure point measure that is supported on Z, with autocorrela-
tion coefficients given by

�B�m� = lim
N→�

1

2N + 1 �
n=−N

N

WnWn+m �4�

for m�Z. These coefficients almost surely exist, by an ap-
plication of the strong law of large numbers �see below�, for
all m�Z, and satisfy

�B�m� = 	1, m = 0,

�2p − 1�2, m � 0.



This statement can be proved as follows. It obviously holds
for m=0, so consider some fixed m�0. The products Zn
ªWnWn+m form a family �Zn�n�Z of identically distributed
random variables, which take values 1 and −1 with probabili-
ties p2+ �1− p�2 and 2p�1− p�, respectively. These new ran-
dom variables are not independent, but we can split the sum
in Eq. �4� into two sums �for instance, according to even and
odd values of � n

m �, the largest integer smaller than or equal to
n
m �. The resulting two sums each comprise pairwise indepen-
dent random variables. An application of the strong law of
large numbers in its formulation by Etemadi21 then shows
that each sum almost surely converges �as N→�� to the
expectation value of any of the single random variables in
the sum, which is 1

2 �2p−1�2. Hence, the diffraction measure
of the stochastic Dirac comb �B almost surely is

��B
ˆ = �2p − 1�2�Z + 4p�1 − p�� ,

where � again denotes Lebesgue measure. In other words,
the diffraction spectrum comprises a constant background of
intensity 4p�1− p� for any value of the wave number k and
Bragg peaks of intensity �2p−1�2 at integer k. Note that for
the perfectly ordered cases p=0 and p=1, the background
vanishes, while the Bragg peaks vanish for the maximally
disordered case p= 1

2 . At this value of p, the diffraction mea-
sure coincides with that of the Rudin-Shapiro chain.

This establishes the homometry of the deterministic bi-
nary Rudin-Shapiro chain �with entropy 0� and the com-
pletely random Bernoulli chain with p= 1

2 �with entropy
ln�2��, as originally observed in Ref. 10. Coupling the two
systems in a suitable way, we shall now extend this to an
entire family that covers the intermediate entropy range.

IV. BERNOULLIZATION

The Bernoulli chain discussed above is an example of a
completely random and interaction-free system. In view of
real-world examples, it is interesting to explore what hap-
pens if one imposes the influence of coin tossing on the order
of a deterministic system. This can be realized in many dif-
ferent ways. Here, we focus on binary sequences and modify
them by an iid family of Bernoulli variables.

Consider a bi-infinite binary sequence S� �
1�Z which
we assume to be uniquely ergodic. Then, the corresponding
Dirac comb �S=�n�ZSn�n possesses the unique �natural� au-
tocorrelation �S=�m�Z�S�m��m with the autocorrelation co-
efficients �S�m�, where �S�0�=1 by construction.

Let �Wn�n�Z be an iid family of random variables where
each takes values +1 and −1 with probabilities p and 1− p.
The Bernoullization of �S is the random Dirac comb

� ª �
n�Z

SnWn�i, �5�

which emerges from �S by independently changing the sign
of each Sn with probability 1− p. Setting ZnªSnWn defines a
new family of independent �though in general not identically
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distributed� random variables, with values in �
1�. Despite
this modification, the autocorrelation � of � almost surely
exists and can be determined via its autocorrelation coeffi-
cients ��m� as follows. Since one always has ��0�=�S�0�
=1, let m�0 and consider, for large N, the sum

1

2N + 1 �
n=−N

N

ZnZn+m

=
1

2N + 1� �
�+,+�

+ �
�−,−�

− �
�+,−�

− �
�−,+�

�WnWn+m,

which is split according to the value of �Sn ,Sn+m�. Each of
the four sums can then be handled in the same way as in the
argument for the Bernoulli chain above, thus contributing
�2p−1�2 times the frequency of the corresponding sign pair.
Observing that the overall signs are the products SnSn+m, it is
clear that as N→�, one �almost surely� obtains ��m�
= �2p−1�2�S�m� for all m�0. This shows that the new au-
tocorrelation almost surely is �= �2p−1�2�S+4p�1− p��0
where �S is the unique autocorrelation of �S.

Let us apply this Bernoullization procedure to the Rudin-
Shapiro chain. Denote by � the random Dirac comb obtained
from the Bernoullization �with parameter p� of the binary
Rudin-Shapiro chain. Then, the autocorrelation measure al-
most surely exists and reads �=�0, independently of p. This
means that the random Dirac combs �, even for different
values of p, are almost surely homometric, and share the
purely absolutely continuous diffraction measure �̂=�.

Note that this example explores the full entropy range of
Eq. �3�: the Bernoulli case �with p= 1

2 � has entropy ln�2�, the
maximal value for a binary system, while Rudin-Shapiro has
entropy 0, and the parameter p interpolates continuously be-
tween the two limiting cases. The solution of the correspond-
ing inverse problem is thus highly degenerate. Unless addi-
tional information is available, for instance, via higher-order
correlations, one possible strategy could employ a maximum
entropy method,22 singling out the Bernoulli comb.

Both the Bernoullization procedure and the specific one-
dimensional examples immediately generalize to higher di-
mensions by taking direct product structures. In particular,
the product of d Rudin-Shapiro chains results in a determin-
istic system in d space with the same purely absolutely con-
tinuous diffraction measure as the corresponding coin-
tossing model. Consequently, our above conclusions extend
to this case. This means that one can also produce examples
with lower-rank entropy, which is a phenomenon that occurs
in dimensions d2.

V. CONCLUDING REMARKS

Diffraction methods provide the most important approach
to structure determination. The presence of Bragg diffraction
clearly indicates an ordered structure, though the discovery
of quasicrystals23 in the 1980s showed that pure point dif-
fraction occurs in more general systems than just conven-
tional crystals. To date, the precise atomic structure of qua-
sicrystalline alloys is still not completely understood; there is
evidence that entropy plays an important role in stabilizing
quasicrystalline structures, and that some disorder may be an
inherent feature of these alloys. Like for many ordinary crys-
tals, diffuse scattering is present in experimental diffraction
patterns of even the best-known quasicrystals, and there is an
increasing effort to explore the information contained in the
diffuse diffraction intensity1,2; see Ref. for a recent example.
It is tempting to draw conclusions about the degree of order
in a structure on the basis of the observed diffuse scattering
intensity. However, as our explicit example demonstrates,
such conclusions have to be considered carefully since the
relation between diffuse scattering and disorder is far from
simple.
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